Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 17, 2026
-
Abstract Spectral line surveys of the Taurus Molecular Cloud-1 (TMC-1) have led to the detection of more than 100 new molecular species, making it the most prolific source of interstellar molecular discoveries. These wide-band, high-sensitivity line surveys have been enabled by advances in telescope and receiver technology, particularly at centimeter and millimeter wavelengths. In this work, we present a statistical analysis of the molecular inventory of TMC-1 as probed by the GOTHAM large program survey from 3.9 to 36.4 GHz. To fully unlock the potential of the ∼29 GHz spectral bandwidth, we developed an automated pipeline for data reduction and calibration. We applied a Bayesian approach with Markov Chain Monte Carlo fitting to the calibrated spectra and constrained column densities for 102 molecular species detected in TMC-1, including 75 main isotopic species, 20 carbon-13 substituted species, and seven deuterium-substituted species. This list of the detected gas-phase molecules is populated by unsaturated hydrocarbons, in stark contrast to the oxygen-rich organics found in sublimated ices around protostars. Of note, 10 individual aromatic molecules were identified in the GOTHAM observations, contributing 0.011% of the gas-phase carbon budget probed by detected molecules when including CO and 6% when excluding CO. This work provides a reference set of observed gas-phase molecular abundances for interstellar clouds, offering a new benchmark for astrochemical theoretical models.more » « lessFree, publicly-accessible full text available October 23, 2026
-
New sources of parity and time-reversal violation are predicted by well motivated extensions of the Standard Model and can be effectively probed by precision spectroscopy of atoms and molecules. Chiral molecules have distinguished enantiomers which are related by parity transformation. Thus they are promising candidates to search for parity violation at molecular scales, which has yet to be observed. In this work, we show that precision spectroscopy of the hyperfine structure of chiral molecules is sensitive to new physics sources of parity and time-reversal violation. In particular, such a study can be sensitive to regions unexplored by terrestrial experiments of a new chiral spin-1 particle that couples to nucleons. We explore the potential to hunt for time-reversal violation in chiral molecules and show that it can be a complementary measurement to other probes. We assess the feasibility of such hyperfine metrology and project the sensitivity in . Published by the American Physical Society2024more » « less
-
We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8−25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed.more » « less
-
Large-amplitude vibrational motion influences the rovibrational structure of molecules that tunnel between multiple wells. Reaction path (RP) Hamiltonians, and curvilinear coordinates more gen- erally, are useful for modelling pure vibrational motion in these systems and provide a practical framework for calculating accurate ab initio anharmonic vibrational energies and tunnelling split- tings with perturbation theory. These computational tools also offer the means to address rotation- vibration coupling associated with large-amplitude motion in rotating molecules. In this paper, we incorporate the reduced axis system (RAS) frameembeddingwithRPHamiltoniansandsecond-order vibrational Møller-Plesset perturbation theory (VMP2). Because the RP-RAS Hamiltonian eliminates rotation-vibration momentumcoupling everywhere along a one-dimensional reaction path, it is well suited for rovibrational VMP2 methods, the convergence of which relies critically on approximate vibration-vibration and vibration-rotation separability. The accuracy of this combined RP-RAS-VMP2 scheme is demonstrated by comparisons with numerically exact variational calculations and VMP2 parameters based on traditional Eckart embeddings for reduced-dimension models of torsional tunnelling in hydrogenperoxideandinversion tunnelling in cyclopropyl radical. Thefavourablecom- putational scaling ofVMP2makes it a promising strategy for calculating accurate tunnelling-rotation parameters for medium-sized and larger molecules in full dimensionality.more » « less
-
Recent advances in circumstellar metal chemistry and laser-coolable molecules have spurred interest in the spectroscopy and electronic properties of alkaline earth metal-bearing polyatomic molecules. We report the microwave rotational spectra of two members of this important chemical family, the linear magnesium- carbon chains MgC4H and MgC3N, detected with cavity Fourier transform microwave spectroscopy of a laser ablation-electric discharge expansion. The rotation, fine, and hyperfine parameters have been derived from the precise laboratory rest frequencies. These experimental results, combined with a theoretical quantum chemical analysis, confirm the recent identification of MgC4H and MgC3N in the circumstellar envelope of the evolved carbon-rich star IRC+10216. The spectroscopic data also provide insight into the structural and electronic properties that influence the metal-based optical cycling center in this unique class of laser-coolable polyatomics.more » « less
-
We report the hyperfine-resolved rotational spectrum of gas-phase phenoxy radical in the 8–25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings has yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and in space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates yet undetected at radio wavelengths are discussed.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract We present the spectroscopic characterization of cyclopropenethione in the laboratory and detect it in space using the Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules survey. The detection of this molecule—the missing link in understanding the C3H2S isomeric family in TMC-1—completes the detection of all three low-energy isomers of C3H2S, as both CH2CCS and HCCCHS have been previously detected in this source. The total column density of this molecule (NTof cm−2at an excitation temperature of K) is smaller than both CH2CCS and HCCCHS and follows nicely the relative dipole principle (RDP), a kinetic rule of thumb for predicting isomer abundances that suggests that, all other chemistry among a family of isomers being the same, the member with the smallest dipole (μ) should be the most abundant. The RDP now holds for the astronomical abundance ratios of both the S-bearing and O-bearing counterparts observed in TMC-1; however, CH2CCO continues to elude detection in any astronomical source.more » « lessFree, publicly-accessible full text available March 28, 2026
An official website of the United States government
